Samco PZTエッチャー(ICP-RIE) 簡易マニュアル

井上純一 14/04/01

★注意すべき事柄

●BCl3使用時にはO2を流さないこと

(BCl3とO2が反応して固体となりチャンバ、配管などに付着してしまうため) ⇒前回の使用者がBCl3 or O2を用いた場合には、チャンバークリーニングを1~2時間行うこと

●CH4とCF4は同じガスラインを用いているので、同時に使えない ⇒切り替える場合には、十分に配管パージをおこなうこと

使用前確認事項

※CR本室中央天井のN2バルブが開いていることを確認(1次圧、2次圧ともに確認) ※装置背面の流量計が緑に点灯していることを確認(ターボ分子ポンプの冷却など) ※CR外のN2ボンベが開いている事を確認

使用準備

1.CR外側のN2ボンベをOPENにしておくこと(VENTなどに利用) 2.前回使用した状態を確認すること(使用簿など)

※自分が使用するラインで前回の使用者が配管パージを行っていなかった場合 0.配管パージを行う(CF4、CH4、CHF3) ⇒パージを行うボンベの元栓が締まっている事を確認する (もし元栓が開いている状態でGSV,GVを開けてしまうと垂れ流してしまうことになる) ⇒基本画面からManual Modeを選択 ⇒GSVとGVを押し、ガスを排出していく(CF4、CH4、CHF3はかなり長い) ※前回の使用者がBCl3およびCl2の配管パージを行っていなかった場合 (BCl3もしくはCl2を使用する場合には行わなくてOK) 0.装置背面のCl2およびBCl3のガスボンベが閉まっている事を確認 1.ESV.GSV.GVを押し、ガスを排出する(BCl3については流量計不具合のため1.0まで引く) 2.ガスが排出し終わったら、GSV,GVのみを閉める 3.SV1、SV7をOpenにすることでN2を充填する 4.充填し終わったらN2をESV,GSV,GVをあけて捨てる。これを2回繰り返す 5.捨て終わったら、GSV.GVのみを閉めて、N2を充填し、ESVを閉める ※配管パージなどが完了している場合 (BCl3及びCl2以外を使用する場合) 1.使用したいガスの元栓が締まっている事を確認する 2.Main画面からManual Modeタブに移る 3.使用するガスのGSV,GVをあけて、流量が0であることを確認 (BCl3およびCl2を使用する場合) 1.BCl3およびCl2の元栓が締まっている事を確認 2.ESV.GSV.GVを開けて、中に充填されているN2を追い出す 3.排気し終わったら、ESV.GSV.GVを閉める

<u>立ち上げ</u> (CF4、CH4、CHF3を使用する場合) 1.Main画面⇒System Settingsタブ⇒Gas Selectionタブ(右上)を指定 2.MFC3のガス(ナンバー)を指定+MAX流量値を指定 (CF4:42.4 sccm CH4:72.4 sccm CHF3:51.7 sccm)

3.Main画面⇒Manualタブ⇒(初期設定で)Flow Screeen⇒Parameter Setタブ(右上) ⇒MFC3のMax valueのSettingを行う(Manualモードで使うときの設定)

使用ガスの準備

(BCl3及びCl2以外)
 1.GSV及びGVが点灯していない事を確認(画面上で開いていないことを確認)
 2.使用ガスの元栓を開ける(CRのICP-RIE左奥の扉外)
 3.GSV及びGVをあける
 4.PVがSVと同量に流れることを確認(ガスがもったいないので迅速に行う事)
 5.GSV及びGVを閉じる

(BCl3及びCl2を使用する場合) 1.ESV、GSV、GVが点灯していない事を確認(画面上で開いていないことを確認) 2.ESVを開ける(点灯させる) 3.ICP-RIE装置裏面のSV1及びSV7がcloseになっていることを確認(充填用N2バルブのため) 4.使用ガスの元栓(ICP-RIE装置裏側)を開ける (N2が抜けていることは装置裏面のそれぞれのレギュレータが0以下を示している事で確認) ※N2がBCl3及びCl2のガスボンベに混ざる事は絶対に避ける事…!

5.レギュレータの値が上がる事を確認(ガスが出てきていることを確認) 6.GSV及びGVをあける

7.SVに対しPVが同量に流れることを確認(ガスがもったいないので迅速に行う事) 8.GSV及びGVを開けている状態で裏面のレギュレータの圧力が変わらない事を確認 (ガス残量0であったり、ガスラインのどこかがcloseになっていたりすると、圧が減っていく) 9.GSV及びGVを閉じる

Parameter Set

lenu	Manua	Mode		Parameter	Set			Sor	een	Trans
and the second s	Settin	g		Max value						
MFC1	0.02	108.0	SCOM	100. 0 sccm						
NFC2	800.	50.0	SCON	50. 0 sccm						
MF03	CF.	42.4	SCOM	42.4 sccm		_				
NFC4	A-	200.0	SCON	200. 0 sccw			Y			
NFC5	0.	200. 0	SCOM	200. 0 scow						
NFC6		0.0	-	0. 0 scow				_	_	
Process	pressure	1. 80	Pa	13. 33 Pa						
APC PO	osition	188. 0	X	100.0 %		1				
He Pro	essure	2.88	kPa	13, 33 kPa			1.4			
RF-IC	P power	580	W	1000 W					12	
RF-Bi	as power	280	W	388 W		-			-	

空処理

実際に行うエッチング条件で空処理⇒本番を行う 1.アルミナ基板がLLC(ロードロックチャンバ)に入っている事を確認 2.画面上でRCにウェハが入っていない事を確認

※アルミナ基板がLLCに入っていない場合

 →Main画面⇒Auto Mode⇒LLC Ventのみ点灯させる⇒Flow Screen⇒Start長押し (プロセス番号などに関わらずLLCのVent作業のみ行ってくれる)
 ⇒LLCにアルミナ基板(ダミーウェハ)を入れる
 ⇒Main画面⇒Auto Mode⇒LLC Pumpdownのみ点灯させる⇒Flow Screen⇒Start長押し

(プロセス番号などに関わらずLLCのPumpdown作業のみ行ってくれる)

3.Main画面⇒Recipe Editタブに移動

```
4.自分が使用したいレシピを選択する(Recipe No選択)
```

5.使用したいレシピのStep Dataを確認する(誰かがいじってる可能性があるので要確認)

- ・RF Timer ⇒プロセス時間
- ・Init Press ⇒初期圧力
- ・Process press ⇒プロセス時の圧力
- ・CGV Position ⇒0:Full close 1000:Full open (基本はProcess pressのみ設定)
- ・He Pressure ⇒基板伝熱用ヘリウムの圧力
- ・RF ICP Power ⇒ICP側のRF出力
- ・ RF Bias Power ⇒Bias側のRF出力
- ・Hi VAC IG S.P. ⇒高真空排気時の電離真空計のセット
- ・Hi vac pumpdown ⇒プロセス前の高真空排気でIGフィラメント点灯までの時間
- ・Gas flow stabilizing ⇒GVがOPENからRFがONになるまでの時間(安定するまで)
- ・Residual gas evac ⇒プロセス後の残留ガスの排気時間
- ・ESC ⇒静電チャック

6.レシピ入力後、RF Timerを5minに設定(5minを空処理の標準時間とする)

```
7.Main画面⇒Auto Modeへ
⇒LLC Pumpdown、WaferLoad、Process、WaferUnload、LLCVentを点灯させる
```

⇒Flow Screen ∧

```
8.Start Recipeに使用するレシピナンバーを入力
```

9.Startを長押しする

10.プロセスが自動で開始される

- ・LLCのPumpdown
- ・ウェハをRCへ搬送
- ・プロセス開始 (プラズマが立つ)

※プラズマが立っていることを左のチャンバー窓から確認

```
※He PressのPos(画面中央下)が30%以下になっていることを確認する
```

(30%以上の場合はウェハの静電チャックが正常に行えておらず、ウェハがばたつく)

※もし30%以上になってしまったら?

⇒Abortを長押し
 ⇒Bz Stop (もしくはReset)
 ⇒Auto Modo画面⇒Wafer Unload、LLC Ventのみ点灯
 ⇒Start長押し
 ⇒ウェハ裏をアセトンで拭く
 ⇒プロセスやり直し

```
・プロセス終了後、ウェハ搬送
```

```
• LLCのVent
```

本番エッチング

1.ウェハの裏をアセトンで拭く
2.ウェハをLLCに投入
3.Main画面

⇒Recipe Edit
⇒使用したレシピ選択
⇒行いたい時間にRF Timerを変更
⇒Main画面へ

4.Auto Mode

⇒LLC Pumpdown、WaferLoad、Process、WaferUnload、LLCVentを点灯させる
⇒Flow Screenへ

5.Start長押し

6.空処理と同様の注意点に注意してプロセスを見守る

※絶対にウェハ搬送時にはAbortを押さないこと!

7.ウェハが戻ってくる

終了手順

1.アルミナ基板をLLCに投入

2.Main画面⇒Auto Mode

⇒LLC Pumpdownのみを選択

- \Rightarrow Flow screen
- ⇒Start長押し

⇒LLC室の真空引き完了

3.配管のラインパージ作業を行う

(CH4、CHF3、Arを使用した場合)

⇒パージを行う使用ガスボンベの元栓が締まっている事を確認する

(もし元栓が開いている状態でGSV,GVを開けてしまうと垂れ流してしまうことになる)

⇒基本画面からManual Modeを選択 ⇒GSVとGVを押し、ガスを排出していく(CF4、CH4、CHF3はかなり長い)

(BCl3、Cl2を使用した場合)

0.装置背面のCl2およびBCl3のガスボンベを閉める 1.ESV,GSV,GVを押し、ガスを排出する(BCl3については流量計不具合のため1.0まで引く) 2.ガスが排出し終わったら、GSV,GVのみを閉める 3.SV1、SV7をOpenにすることでN2を充填する 4.充填し終わったらN2をESV,GSV,GVをあけて捨てる。これを2回繰り返す 5.捨て終わったら、GSV.GVのみを閉めて、N2を充填し、ESVを閉める

4.クリーニング作業 (※日の最後に使用した際には必ず実行すること)
⇒O2、CF4についてガスの元栓を開ける
⇒GSV、GVをあけてガスが流れる事を確認
⇒Main画面⇒Auto Mode
⇒LLC Pumpdown、Wafer Load、Process、Wafer Unload、LLC Ventを選択
⇒Flow screenへ
⇒Recipe No,2を選択 (クリーニングレシピ: CF4,O2 1hour)
⇒Start長押し
⇒終了後、LLC pumpdownのみ実行
⇒O2、CF4の元栓を閉め、パージ作業を行い終了

A 2	Step	No. 1 V	CLEA	Auto Trout	Comment
	Step Setting h 8m 8s 5,00 Pa 3,00 KPa 50 W 50 S0 30,0 S 30,0 S 30,0 S	Data Raile MFC1 O2 MFC2 BO3 MFC3 MFC4 Ar MFC5 MFC6 MFC6	Setting 8.8 sccw 8.8 sccw 18.8 sccw 8.9 sccw 188.8 sccw 8.9 sccw	Recipe Data ESC SPS Repeat Step Nor 0 Nor	Recipe Copy Copy Recipe ho.

クリーニングレシピ

No.2…	クリーニングレシピ	CF4、O2
No.3…	O2クリーニングレシピ	O2
No.5…	PZTエッチングレシピ (High recipe)	CH4、BCl3、Cl2
No.7…	PZTエッチングレシピ(Low recipe)	CH4、BCl3、Cl2
No.8…	Pt/Tiエッチングレシピ	Cl2、Ar
No.9…	02アッシングレシピ	O2
No.10…	SiO2エッチングレシピ	CHF3

著者メモ

【PZTエッチャー エラー各種】
Cooling water shortage フローチェッカー故障の可能性 チラーがエラーで止まっている可能性
offset ほんにゃら gas 系エラー ガス元栓確認 ウェハのポジションが取れていないか
Abnormal He pressure level Hen^{*} ルブ</sub>が閉まっているか、Positionが30%以下
Auto operator cycle time over

Ventされたまま放置か、蓋のしまりが悪くN2大気開放しっぱなし

Chamber pressure limit over
 ガス圧もしくはプレッシャー圧が高すぎる

【個人的メモ】

- 圧力(エッチング時)⇒ケミカルかフィジカルかエッチングに起因
 圧力大⇒ケミカルなエッチングが強くなる傾向(ガスが溜まりやすい?)
 圧力小⇒フィジカルなエッチングが強くなる傾向(ガスが抜けにくい?)
 ※バイアス調整よりもエッチングに対して強く影響する模様…!
- バイアス:大⇒物理的エッチングが強くなる(プラズマによる原子移動方向の力が強くなる)
 小⇒物理的エッチングが弱くなる
- 使用上:GV及びGSVを開けて13Paを超えるとCGVが緊急停止する模様
 BCl3、Cl2、CF4を同時に配管パージを行ったりすると起こる。無理せず1ラインずつパージ
 ※もしCGVが緊急停止した場合は…AutoMode⇒Chamber pumpdown⇒ポンプの再立上げ

【装置チャンバークリーニング工程】

1. チャンバー開放

Auto mode タブ

→Chanber vent指定

→ Start (LU/L VENT→LV4/LV3でN2流入による大気開放→RC vent (Cycle Purge) → LV2開放によりN2流入による大気開放) という流れが行われる

- →完了を確認
- →Mainタブ
- \rightarrow Transfer
- →Maintenance Mode ON (長押し)
- →RC lid Open (チャンバーのフタが開く)
- 2.掃除

→基本的には中をIPAとBEMCOTで拭いていく →PZTを削ると黒いカスがこべりつくため、それを拭き除いていく

(年に数回は…)

- →年に数回は中の外せる部分を外していき、CR外の水道で洗浄していく →洗浄後はホットプレート上で熱することで乾燥させる
- →元に戻す

3.チャンバーの真空引き

- \rightarrow RC lid Close
- →Maintenance Mode off
- →Auto modeタブ
- \rightarrow Chanber pumpdown
- →Auto modeタブ
- →Pompdown
- → (真空に引けていれば完了。ダメだった場合にはOリングなど確認を)

【停電時対策マニュアル】

★停電時の完全停止作業について

1.全てのガスボンベの元栓が閉まっていることを確認
 2.(画面) main→system shutdown →OFF
 3.complete画面を確認後、main switchをOFF
 4.装置向かって右側の背面のブレーカをOFF

※ICP-RIEとDEEP-RIEは同時に消さないとチラーからの圧力負荷が片側にかかってしまう

★停電復帰後および装置立ち上げ作業について

※CR外のN2ボンベの元栓を開ける ※チラーが動いている事を確認する ※インキュCR本室中央天井のN2バルブがあいていることを確認する ※Heボンベのみ開けておくこと

- 1.装置背面のブレーカをONにする
- 2.画面横のMain SwitchをONにする
- 3.TMP SETUPが終わるのを待つ

4.ターボ分子ポンプのSETUP終わり次第、System Start upを押す

5.User levelをMaintenanceモードに変更する(MaintanceモードだとSystemSetting等がいじれる) 6.装置背面の流量計が緑に点灯していることを確認

